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ABSTRACT

Historical reconstructions of climate fields, such as sea surface temperature (SST), are important for climate

studies and monitoring. Reconstructions use statistics from a well-sampled base period to analyze a sparsely

sampled historical period. Here a method is shown for adjusting the base-period statistics using the available

historical data so that statistics better represent historical variations. The method is demonstrated using

annual SST anomalies from a coupled GCM historical run, 1861–2005, forced by greenhouse gases and

aerosols. Simulated data are constructed from the model’s SST using observed historical SST sampling with

error estimates added. Reconstructions are performed using the simulated data, and the results are compared

to the full model SST without added errors. The results from applying other reconstruction methods to the

simulated data are compared. The tests show that the method improves annual SST reconstructions, espe-

cially in the early years, when sampling is most sparse and in the extratropics. In particular, the 1881–1900

correlation averaged over 308–608S and over 308–608N improves from about 0.4 using noniterative re-

construction to about 0.6 using iterative reconstruction. The correlations of annual values in the tropics are

about 0.7 with both methods. Incorporating those improvements into an SST reconstruction could better

represent extratropical climate variations in the nineteenth and early twentieth centuries, and improve the

value of the reconstruction for long-period climate studies and for validating climate models.

1. Introduction

Reconstructions of historical climate fields are ana-

lyses that use statistics to compute complete fields

based on limited historical observational data. Re-

constructions based on historical observations are useful

for long-term climate studies and for monitoring climate

variations. Typically, the statistics are based on modern

analyses that include satellite data to define spatially

complete statistics. Reconstructions of historical sea

surface temperature (SST) anomalies have been de-

veloped at several centers (e.g., Smith et al. 1996;

Kaplan et al. 1998; Rayner et al. 2003). At the National

Oceanic and Atmospheric Administration (NOAA),

they were developed by Smith et al. (1996) for the period

beginning 1950, using statistics based on the merged

in situ and satellite analysis of Reynolds and Smith

(1994). An Extended Reconstruction of SST (ERSST),

for the period beginning 1854, was later developed by

Smith and Reynolds (2003). The NOAA ERSST anal-

ysis has been updated and improved periodically, and

the current version is by Huang et al. (2015), but the

basic methods are from Smith andReynolds (2003). This

study describes a potential improvement in ERSST

methods that can improve the representation of multi-

decadal to interannual variations.

Improvements described here are most important in

the extratropics and before the mid-twentieth century,

when sampling is relatively sparse. Interannual to mul-

tidecadal components of climate modes can be better

represented for that early period, including modes

such as the Pacific decadal oscillation (PDO; Mantua

et al. 1997), the North Atlantic Oscillation (NAO;

Hurrell 1995), and SouthernHemisphere annularmodes

(Thompson and Wallace 2000). As discussed later, the

improvements in the tropics, including the repre-

sentation of El Niño–Southern Oscillation (ENSO), are
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smaller. Better representations of nineteenth-century to

early twentieth-century SST variations are important for

multidecadal climate studies, including studies that link

oceanic and continental variations and climate model

validation. Therefore, the improvements discussed here

could lead to improved understanding of long-term cli-

mate variations.

ERSST is a combination of two analyses (Smith and

Reynolds 2003). First, an annual low-frequency analysis

is produced using a moving 15-yr window of observed

SST anomalies to compute an annual low-frequency

anomaly. An annual average of SST anomalies is com-

puted for each of the 15 years in themoving window, and

those annual averages are smoothed, filled, and spatially

expanded using large-scale averaging. For regions far

from any sampling, the anomaly is set to zero. The me-

dian of the 15 years is then used to define the low-

frequency analysis for the center year, which is used as a

first-guess analysis for ERSST. Monthly increments

from the first guess are computed by fitting the available

observed monthly increment anomalies to a set of spa-

tial covariance modes. The spatial modes are based on

the Reynolds and Smith (1994) monthly analysis. The

two-part approach is used for ERSST because the

satellite-based SST analysis may not represent multi-

decadal changes that occur before the satellite base

period. However, there are potential problems with the

ERSST low-frequency estimate due to sparse sampling

in the nineteenth and early twentieth centuries. In ad-

dition, the need for spatial filtering to fill regions de-

grades its resolution.

An alternative method for analysis of multidecadal

variations was developed by Rayner et al. (2003). They

used combined in situ and satellite observations, when

available, for 1901–97. The SST anomalies are spatially

averaged to a 48 grid and are averaged to seasons

[January–March (JFM), April–June (AMJ), July–

September (JAS), and October–December (OND)].

Seasonal data are then low-pass filtered using aChebyshev

filter to remove variations with periods less than 8 years.

For each season the leading empirical orthogonal func-

tion (EOF) of the filled and smoothed data is used to

define the multidecadal signal for their SST analysis. As

with the ERSST method, their method requires spatial

and temporal smoothing due to sparse sampling, and

even with the filtering there are regions where sampling

is too sparse to a define multidecadal EOF.

Here a method is discussed for computing an annual

average SST reconstruction that could be used as an

improved first guess for an extended monthly or sea-

sonal reconstruction. This method uses EOFs that are

iteratively improved by statistical reinjection of the

available historical observations. The incorporation

historical data with incomplete sampling throughout the

period of record gives the EOFs the ability to better resolve

large-scale variations over the full record. Here the method

is tested using coupled atmosphere–ocean general circula-

tion model (CGCM) output SSTs, with observed sampling

and error estimates. Results are validated against the full

model SST. The new method improves both the annual

averages and the low-frequency estimates before about

1950. It also gives a more spatially complete representation

of multidecadal variations due to improvements in tele-

connectionpatterns in the leadingEOFs. Improvements are

greatest in the extratropics. In the next sections, the model

output, observed SST sampling, and simulated errors are

described. Following that is a description of the new re-

constructionmethod, a discussion of results, and a summary

and conclusions.

2. SST and sampling

The SST anomalies used for testing are output from a

CGCM. For the annual analysis, this is subsampled

using a historical sampling grid. Realistic historical er-

rors are estimated and added to the subsampled data

before analysis. Several historical error estimates are

tested to evaluate their influence on the results. One

estimate is of only random errors, and the other is of

combined random and correlated errors. A comparison

to the fully sampled SST anomalies is used to show the

relative quality of different methods.

a. Model-output SSTs

The CGCM output was downloaded from NOAA’s

Geophysical Fluid Dynamics Laboratory (GFDL) data

portal (http://nomads.gfdl.noaa.gov/). Output from the

GFDL-ESM2M historical run was used, produced as

part of the CMIP5 experiment discussed by Taylor et al.

(2012). The historical run CGCM forcing includes

greenhouse gases, ozone, and aerosols. Further docu-

mentation of the model is available online at the GFDL

data portal. Monthly surface temperatures for 1861–

2005 were obtained on an irregular model grid and av-

eraged to a regular 58 grid. Land regions were masked

out for estimates of model SST. The 1971–2000 annual

cycle was removed to form monthly anomalies, which

were then averaged annually.

The CGCM SST anomalies are used to simulate ob-

served SST anomalies. For the testing to be valid, the

model should have variations similar to the observed

variations. Over the 1982–2005 overlap period, the

model’s overall pattern of annual SST standard de-

viation is similar to the optimum interpolation (OI;

Reynolds and Smith 1994) observed standard deviation

(Fig. 1). The OI analysis includes both satellite and
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in situ observations, and is here considered a good estimate

of the true annual SST variations. This figure also shows

the oceanic reconstruction regions tested. In both the

model’s and the observed standard deviations, there are

higher values in the tropical Pacific and extratropical

North Pacific and North Atlantic in similar regions. The

model’s standard deviation is higher than the observed OI

standard deviation. But since the regions of high and low

standard deviation are similar, the influence of regional

sampling changes should be similar for both. There are

slight differences in the standard deviation patterns. For

example, the model’s tropical and North Pacific standard

deviation maxima are shifted slightly west of the observed

value. However, the overall patterns are close and testing

using themodel output should give a usefulmeasure of the

relative quality of different reconstruction methods.

b. Observed historical sampling

Historical 58monthly SST anomalies and sampling are

obtained from theHadley Centre SST analysis, version 3

(HadSST; Kennedy et al. 2011a,b). The HadSST sam-

pling contains the number of individual observations

averaged in each 58 monthly region and is available

beginning in 1850 with periodic updates.

Model annual average anomalies are used only in the

tests for years at locations where the number of months

sampled is at least four. The fraction of annual sampling

is lowest before 1880, with a gradual increase in global

sampling, except for interruptions associated with the

two world wars in the first half of the twentieth century

(Fig. 2). For the area north of 458N, the annual sampling

is lower but otherwise similar to the global sampling. In

the area south of 458S, there is modest sampling before

1914, when the Panama Canal opened and ships no

longer needed to take the long southern route. The loss

of sampling south of 458S in the 1910s is 100% for several

years, suggesting that the loss is largely caused by

changes in shipping routes associated with the opening

of the canal. The reduction in sampling in the 1910s is

less severe north of 458S, and is about 50% from 458S to

FIG. 1. Standard deviation of the 1982–2005 annual average SST anomalies from the (top) OI

analysis and (bottom) CGCM.
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the equator and 10% from the equator to 458N. South of

458S the sampling is relatively low from the 1910s to the

1940s, and the loss is again 100% in the early 1940s,

apparently due to the Second World War. In the 1940s

sampling decreases in all latitude bands, although the

decreases are most severe in the Southern Hemisphere.

After the 1950s sampling begins increasing. South of

458S sampling is relatively high since the early 1980s, in

large part due to more buoy sampling in the region.

Spatial patterns of sampling are shown for two years,

1896 and 1946 (Fig. 3). The 1896 sampling is typical for

the late nineteenth century, and that year is also used for

comparisons discussed later. For 1896 there is good an-

nual sampling for most regions between about 508S and

608N, except for the western Pacific, which has a large

gap. The 1946 sampling shows how sampling progressed

over 50 years. The influence of the Panama Canal is

apparent, and there is muchmore cross-Pacific Northern

Hemisphere sampling. However, in some parts of the

Southern Hemisphere sampling is less in 1946, as sug-

gested by Fig. 2.

c. Random error estimates

The noise-to-signal variance ratio for individual ship

observations h2
0 was measured by Reynolds and Smith

(1994) and was found to be approximately 15, which is

used here. Taking the square root and multiplying by a

typical standard deviation estimate of 0.38C gives the

standard random error for an individual ship observa-

tion, roughly 1.28C, which is similar to the midlatitude

estimate of Kent et al. (1999). For each 58 monthly av-

erage the noise-to-signal variance is

h2
5d(N)5h2

0/N , (1)

where N is the sum of the number of individual obser-

vations for all months averaged for the annual average,

which is used to estimate the random standard error,

«R 5Rsh5d, where R is a pseudorandom number with a

zero mean and a standard deviation of 1, and s is the

signal standard deviation, estimated using the model

base standard deviation (shown in Fig. 1).

Error estimates are added to the simulated data be-

fore reconstruction to test their influence on the results.

Both the random estimate and a partly correlated error

estimate, described below, are tested.

d. Partially correlated errors

Besides random errors, data can have correlated data

errors. While random errors are greatly damped by av-

eraging, correlated errors are not reduced by averaging

and therefore canmore strongly influence an analysis. In

this subsection the amount of correlation in errors is

estimated to evaluate how it influences the analysis. This

partly correlated error estimate contains both a random

and a correlated error component, and is intended to

FIG. 2. Fraction of the indicated area sampled with 58 annual averages from HadSST

observations.
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estimate the type of errors that may occur in HadSST

or similar datasets used to represent monthly averages

on a grid.

To estimate partly correlated errors, the HadSST er-

rors relative to OI are evaluated. The estimates are

computed using OI data averaged to the 58 grid. Al-

though the OI also contains errors, its errors are here

assumed to be much smaller than HadSST errors be-

cause of the much denser OI sampling from combined

satellite and in situ observations. By contrast, HadSST

uses only in situ observations. For this estimate HadSST

and OI are used for 1982–2006, their overlap period

when all inputs for HadSST are from ICOADS. After

2006 HadSST uses SST updates that may be noisier and

thus may not be representative of the historical period.

The average 1982–2006HadSST–OI anomaly difference

is removed, since the bias could be caused by climatol-

ogy differences. The remaining differences are used to

estimate partly correlated estimate errors. This gives an

estimate of the typical errors that could be expected in

historical monthly averages. Causes of the errors may

include the representation of 58 monthly averages from

incomplete sampling and instrument biases, as well as

random errors. The representativeness error for 58
monthly averages has the potential to be large because

HadSST observations are from different times of the day

and month, as well as from different parts of the 58
square. Because of the satellite sampling, the OI rep-

resentativeness error should be much smaller.

The monthly average error variance is computed as a

function of the number ofHadSST 58 observationsN. At

each location the error variance with N is estimated

using anomaly differences from all months. The error

variance is normalized by the OI SST anomaly variance

computed using all months, to remove differences due to

spatial changes in SST variance. Spatial averages of the

normalized error variances are used to evaluate nor-

malized changes with N. If all errors have the same

variance and they are random, then the error variance

should change with N as shown in Eq. (1).

If errors are partly correlated, then they will get

smaller with N more slowly than in Eq. (1). This is

essentially a problem of finding the variance of a mean

given the variance of individual correlated values being

averaged (e.g., Smith et al. 1994). If the error variances

averaged are constant and the correlations between er-

rors are also constant, then the normalized error of the

mean is

h2
C(N)5

h2
0

N
[11 (N2 1)r] . (2)

If the correlation r is zero, then there is no correlated

error and Eq. (2) reduces to the random error estimate.

If errors are perfectly correlated, then r5 1 and there is

no reduction in error variance with sampling.

The global averages of normalized error variance es-

timates with N are clearly not random, which would be

the case for r 5 0 (Table 1). The observed relationship

does not always show reduced error with larger N, per-

haps due to insufficient sampling for each value of N.

However, the overall fit to Eq. (2) is best with r 5 0.7.

This estimate also shows that for the 58monthly regions,

the normalized error for individual observations is less

than the Reynolds and Smith (1994) estimate, which was

used to estimate randomerror «R. Here the averageN5 1

normalized error is found to be about 0.5.

This relationship is used to estimate partly correlated

errors over the historical period as follows. For each

month from 1982 to 2006, the partly correlated error is

computed from the difference betweenHadISST andOI

SST anomalies. When HadISST N . 1, the error esti-

mate is adjusted to the N 5 1 error by scaling it by

h
0

h
C
(N)

5
N

11 (N2 1)r
. (3)

FIG. 3. Maps of annual sampling from HadSST 58 observations for
the indicated years.
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For large N this scaling factor approaches 1/r, which is

about 1.4 for r 5 0. 7. The scaling allows maps of N 5 1

errors to be computed for this value of r.

There are a few locations where the error could not be

computed, mostly in the Arctic and Southern Ocean.

Those remaining blanks in the error maps are filled so

that the maps may be used to estimate errors in histor-

ical periods when sampling may be different. Simple

interpolation filling may not be appropriate, since in-

terpolated errors are spatially correlated perfectly.

Those regions are filled with a combination of half

random and half interpolated N 5 1 error. The random

part is chosen from random on the map and the spatial

interpolation of errors is from surrounding regions.

Since these fill areas that have few data in the historical

period, the filling should minimally influence the results

discussed later.

The monthly partly correlated errors for each year

from 1982 to 2006 are used to estimate historical annual

correlated errors. For each historical year, one of the

years in the period 1982–2006 is randomly selected. For

each month and each location, the N 5 1 partly cor-

related error is scaled by the inverse of Eq. (3),

[11 (N2 1)r]/N, where N is the number of observa-

tions and r 5 0.7. These monthly correlated errors are

averaged to give the annual partly correlated error

estimate. In a later section, the influence on re-

constructions of both random and correlated error es-

timates is tested.

3. Reconstruction methods

The reconstructions are computed by fitting the his-

torical simulated sparse grid data a set of 10 global EOF

modes. The basic method was described by Smith et al.

(1996), and the iterative method is described in some

detail in the appendix. How the method is used is

described here.

A limited number of global EOFs are used for the

reconstruction. Global EOFs are used because we wish

to maximize all reasonable teleconnections because of

the sparse sampling over much of the analysis period.

Here the first 10 EOFs are used. Higher EOFs often

describe processes with small space–time scales and re-

solving them is difficult or impossible using the sparse

historical sampling. In addition, since the first 10 EOFs

explain 89% of the annual anomaly base-period vari-

ance, the ability of higher modes to improve analysis is

limited. More tuning could be performed to find the

optimal number of modes to use, but the results indicate

that this is a good number for testing the method. To

further avoid including undersampled modes in histor-

ical periods with sparse sampling, those with less than

5% of their variance sampled for a given year are

screened out of the analysis. The screening method is

described in Smith and Reynolds (2003) and in the

appendix.

Note that annual anomalies are analyzed. Before

subannual anomalies could be analyzed using this

method, they would need to be tested and tuned for the

different time and space scales, and for the different

sampling available, for subannual anomalies. Subannual

variations typically have smaller time and space scales so

more modes may be needed. However, sampling for

individual months is typically less than annual sampling,

and the larger number of modes may not be supported

by the sparser subannual sampling.

The monthly anomaly increment analysis of Huang

et al. (2015) does not use EOFs, but instead uses em-

pirical orthogonal teleconnection (EOT) patterns. The

EOTs are useful for that application because it is easy to

limit the spatial scales of each EOT, to limit tele-

connections that are not directly supported by obser-

vations. Monthly anomaly increments tend to have

smaller scales than annual anomalies, which is desirable

for their application. Here we wish to maximize tele-

connections and therefore use a set of global EOFs.

Earlier reconstructions using EOF modes employ a

stationary set of modes (e.g., Smith et al. 1996). Here,

after an initial reconstruction, the modes are updated

to include historical information, and then another

reconstruction using the updated modes is computed.

The process is repeated until the variance of the

reconstruction stabilizes. This allows for a global set of

EOF modes to be computed, and it allows for variations

in those modes to be influenced by data from the entire

reconstruction period. Variations that are only partially

sampled by historical data cannot be fully represented in

the adjusted EOFs, but the results show that a low

number of adjusted modes can resolve many variations

that are not resolved by the base-period modes, without

TABLE 1. Global averages of the observed normalized error

variance as a function of the number of observationsN listed under

Obs.Also shown are estimates usingEq. (2) with different values of

r and with the N 5 1 value set to 0.5.

N Obs r 5 0.0 0.1 0.3 0.5 0.7 0.9

1 0.49 0.50 0.50 0.50 0.50 0.50 0.50

2 0.45 0.25 0.28 0.32 0.38 0.43 0.47

3 0.41 0.17 0.20 0.27 0.33 0.40 0.47

4 0.31 0.12 0.16 0.24 0.31 0.39 0.46

5 0.41 0.10 0.14 0.22 0.30 0.38 0.46

6 0.41 0.08 0.12 0.21 0.29 0.38 0.46

7 0.54 0.07 0.11 0.20 0.29 0.37 0.46

8 0.47 0.06 0.11 0.19 0.28 0.37 0.46

9 0.46 0.06 0.10 0.19 0.28 0.37 0.46

10 0.36 0.05 0.10 0.19 0.28 0.36 0.45
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producing physically unreasonable features associated

with sampling.

Here the initial reconstruction uses the 1982–2005

base-periodmodes. For SST reconstructions the satellite

period begins in 1982, so we use that base period to

simulate practical conditions. The reconstruction EOF

modes for the next iteration are adjusted as follows.

First, the reconstructed anomalies over the entire 1861–

2005 period are adjusted using anomaly increments at

sampling locations using the statistical adjustment

method described in the appendix. Then a new set of

EOFs is computed using the adjusted 1861–2005

anomalies. These new EOFs are used to compute an

updated reconstruction.

The anomaly increment analysis is done using an OI

of the simulated observed anomaly with errors minus

the reconstruction. TheOI noise-to-signal variance ratio

is defined by the number of observations, as shown by

Eq. (1), and uses the random error estimate discussed in

section 2b. The OI spatial correlation scales are set to

1000km zonally 3 500 km meridionally (roughly two

grid boxes by one grid box at the equator). In addition,

the OI analysis at each grid box only uses local data,

within two grid boxes zonally and within one grid box

meridionally. A minimum of two defined values within

that range is required for computing an analysis. If there

are too few data, then the increment analysis is set to 0,

and if an analysis is computed with sparse and noisy

data, then it will also be damped toward 0. The re-

injection is therefore not a replacement of the previous

reconstruction but statistical blending using analyzed

increments, with stronger blending where data are more

reliable.

Changes in the variance of the analysis are used to

determine whether an additional iteration is justified.

Here the global spatial variance is computed and

averaged over the entire reanalysis period for this

measure. If this average variance changes by less than

5% between iterations, then additional iterations are

not computed.

4. Results

Reconstructions based on historically sampled data

with simulated errors are validated against the full data.

First, the influence of random and partly correlated er-

rors is evaluated, both for annual and low-frequency

signals. The low-frequency signal is the 15-yr median. It

is computed using the annual reconstructions and by

using ERSST methods of data averaging, for compari-

sons. That testing shows that the partly correlated errors

create larger reconstruction errors than the purely ran-

dom errors. The reconstruction that uses simulated data

with partly correlated errors is further evaluated, since

that may better represent the quality that can be ex-

pected from real historical data.

a. Testing different error estimates

Different error estimates are tested to evaluate their

sensitivity to random error estimates, described in sec-

tion 2c, and the correlated error estimates, described in

section 2d. Comparisons are made against EOF-filtered

data. The EOF-filtered SST anomalies are computed by

filtering using 10 EOFs computed from spatially com-

plete and noise-free model output over the full period,

1861–2005. This method defines the best possible fit that

can be expected from a 10-EOF reconstruction. The

mean spatial correlation of the unfiltered and filtered

model output is 0.82 (Table 2). Filtering using 10 EOFs

computed from the satellite period, 1982–2005, gives the

best reconstruction that can be obtained using the un-

adjusted EOFs, and is labeled the filter and satellite

period (FSP). The FSP is lower than filtering using

modes computed for the full period because the FSP is

not long enough to resolve some of the historical

variations.

Next, reconstructions are considered using historically

sampled model output with simulated errors. The re-

construction using satellite-period modes, and historical

sampling with simulated errors [the reconstruction sat-

ellite period (RSP)] gives an average correlation slightly

lower than the FSP correlation. The different error es-

timates have little influence on the overall RSP corre-

lation. The reconstruction using iteratively adjusted

EOFs gives much better correlation, approaching the

filter correlation for the random error test but lower for

the correlated error test. The comparison shows that

the historical sampling is adequate for annual re-

constructions over most of the period, and that the

TABLE 2. Time averages of spatial correlationwith the full model

annual (ann) average and low-frequency estimate over 1861–2005.

Values are shown using filtered data without simulated errors and

using data with either randomor correlated errors. For filtered data

10 EOFs are computed using 1861–2005 data (filter) and the 1982–

2005 satellite period, FSP. Reconstructions use EOFs from the

satellite period, RSP and iteratively-adjusted EOFs, Iter. Corre-

lation with the model low-frequency include the ERSST method

low-frequency estimate, LF(G), and the low-frequency estimate of

the Iter reconstruction, LF(R).

Random Correlated

Ann filter 0.82 0.82

Ann FSP 0.68 0.68

Ann RSP 0.64 0.63

Ann Iter 0.79 0.74

LF(G) 0.72 0.66

LF(R) 0.83 0.77
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reconstruction method can remove most random errors.

It also shows that correlated errors influence re-

constructions more than random errors, although the

iterative method still improves the analysis compared

to RSP.

Correlations of the model low-frequency signal

against estimates using the ERSST methods to fill

gapped data [LF(G)] and the low-frequency signal of

the iteratively adjusted EOF reconstruction [LF(R)]

indicate that correlated errors most strongly influence

both, and that the LF(R) is more reliable. These com-

parisons show that the iterative-adjusted EOF is better

compared to RSP. The worst realistic case is the re-

construction using the correlated error estimates. In

the following sections, further evaluation is done for

the reconstruction using iteratively adjusted EOFs and

correlated error estimates.

b. Annual results using correlated errors

First consider global annual averages, comparing the

full model output to reconstructions using satellite-

period EOFs (RSP) and using the iteratively adjusted

EOFs (Iter; Fig. 4). The satellite-period analysis is the

first iteration, before historical data are reinjected. Here

the Iter analysis is the second iteration. Additional it-

erations made little change to the reconstruction

variance.

The full model output and the two reconstructions all

have similar global interannual and multidecadal vari-

ations, but the RSP tends to be weaker over much of the

historical period, especially before 1900. The global Iter

analysis more closely follows the global average of the

full model output.

The global spatial correlation with the full model

output is next considered to show how well the spatial

patterns of the reconstruction match the full model

patterns. Here, in addition to RSP and Iter, the filtered

data are also correlated with the full data. The Iter

analysis correlation is only slightly lower than the fil-

tered model correlation over most of the analysis period

(Fig. 5). Before 1870 the Iter correlation is much lower

due to a greater reduction in sampling for that period.

The RSP correlation is slightly higher in the RSP base

period, 1982–2005, because its modes are computed

from that period and therefore can resolve more details

for that brief base period. However, RSP correlation is

noticeably lower in all other periods. This shows that

before the satellite period an RSP analysis will have

larger errors, and that sampling may be insufficient for a

reliable annual analysis before 1870.

Spatial patterns for 1896 are considered next. This

model year has a warm ENSO episode; it is also a year

when the RSP shows much lower spatial correlation.

Maps of anomalies (Fig. 6) show that the RSP analysis

resolves the warm tropical Pacific anomaly and much of

the North Pacific and tropical Atlantic anomalies. But it

fails to resolve anomalies in the North Atlantic, parts of

the North Pacific, and in the southern oceans. While

there are errors in the Iter analysis, it is better at re-

solving anomalies in most regions, accounting for its

higher spatial correlation.

The RSP analysis resolves low latitudes reasonably

well, but it has more difficulty in mid- and high latitudes,

which is typical for the late nineteenth century, as shown

bymaps of temporal correlation over 1881–1900 (Fig. 7).

Correlation maps are of annual RSP and Iter analyses

FIG. 4. Global averages of annual anomalies from the full model output, the RSP analysis, and

the Iter analysis.
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against the full model annual average. The Iter analysis

improvements are clearest south of 308S and north of

458N. In low latitudes spatial patterns are dominated by

ENSO, which has large spatial scales. Because of those

large spatial patterns, less sampling is needed. The

ENSO patterns may also be more stable than extra-

tropical patterns, making the iterative adjustment of

modes less critical at low latitudes. At higher latitudes

spatial patterns tend to have smaller scales and need

either more sampling or better representation in the

reconstruction modes. Since those high-latitude regions

tend to be poorly sampled in the late nineteenth century,

the RSP analysis is not able to reliable resolve variations

with the available sampling. With the improved modes

in the Iter analysis, the available sampling can better

resolve the high-latitude variations.

How well sampled and unsampled regions are repre-

sented is evaluated using the spatial correlations over

either sampled or unsampled areas. As before, the cor-

relations are compared to the fully sampled model-

output SST. The annual RSP correlation changes

greatly depending on whether a region is sampled.

However, the annual Iter reconstruction correlation is

more consistent over sampled and unsampled regions,

indicating that the teleconnections are improved by the

iterative adjustment of the EOFs (shown by the annual

comparisons in Table 3).

c. Low-frequency results using correlated errors

The comparisons shown above are for annual aver-

ages, which could be used as a first guess for a monthly

analysis. The current version of ERSST uses a 15-yr

low-frequency analysis for a first guess. To show low-

frequency changes associated with the improved an-

nual analysis, the ERSST low-frequency method is

applied to the sparse grid CGCMdata and compared to

low-frequency estimates of both the full SST and the

Iter reconstruction. For the ERSST low-frequency

anomalies, annual averages need to be first smoothed

and filled using large-scale spatial filters, and then

the centered 15-yr median is taken to define the low-

frequency anomaly. For the full data and reconstruction,

the spatial smoothing is not needed and the low-

frequency is defined by the 15-yr median.

Global averages of the full model low-frequency sig-

nal [LF(F); full data], LF(R), and LF(G) indicate that at

the global scale there is little difference between the

estimates for most years (Fig. 8). They show that the

ERSST global low-frequency signal is reliable, as is re-

flected in ERSST global error estimates (Liu et al. 2015).

Although the low-frequency global means are

consistent throughout most of the record, spatial

correlations with LF(F) indicate that the spatial pat-

terns are more variable (Fig. 9). For most of the

presatellite period, LF(G) has a correlation of 0.6–

0.8, while the LF(R) correlation is systematically

higher, typically 0.8–0.9. The correlations are lowest

in 1986, which is in the middle of the climate base

period when the low-frequency anomalies are weak.

The relatively low correlation indicates low spatial

variance and not larger errors.

Maps of the low-frequency anomalies for 1896

(Fig. 10) show how the ERSST method for gapped

data (middle panel) represents the large-scale anomaly

FIG. 5. Global spatial correlation with full data anomalies of the filtered data, the RSP analysis,

and the Iter analysis.
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reasonably well in tropical and northern midlatitudes,

where sampling is reasonable. However, in the southern

oceans and high latitudes of the Northern Hemisphere,

the ERSST method strongly damps the low-frequency

anomaly toward zero, where the full low frequency in-

dicates strong anomalies (upper panel). The Iter re-

construction low-frequency analysis map (lower panel)

closely resembles the full model-output low-frequency

map for the year. Thus, the improvements it gives can

reduce regional errors in the low-frequency component

of an ERSST-type analysis that uses a low-frequency

first guess.

The low-frequency spatial correlations are also eval-

uated for sampled and unsampled regions. Correlations

for the low-frequency components are separated using

the sampling of the center year of the 15-yr smoothing

FIG. 6. Annual SST anomalies for model year 1896 from the (top) full model, (middle) RSP

analysis, and (bottom) the Iter analysis.
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period. This estimate is used because for most periods

sampling tends to change slowly. The LF(G) has rela-

tively low but consistent correlation over both sampled

and unsampled regions. However, the LF(R) correla-

tion is actually higher for unsampled regions (Table 3,

low-frequency comparisons), which may be due to high

variance in high latitudes, where sampling is sparse, and

from the ability of the Iter reconstruction to resolve

those variations by better resolution of teleconnections.

These comparisons indicate that much of the improve-

ment in the Iter reconstruction occurs in unsampled

regions.

5. Summary and conclusions

A method for improving historical annual average

reconstruction is presented and tested using CGCMSST

output and observed sampling grids. The method begins

with an EOF analysis based on SST from the satellite

period, since in practice an SST reconstruction needs

spatially complete statistics typically obtained from

satellite sampling. Historical SSTs are reconstructed

using the initial modes, and then the historical anomaly

increments at sampling locations are statistically ana-

lyzed and used to adjust the reconstruction. A new EOF

analysis is then computed using the full period adjusted

FIG. 7.Maps of temporal correlation against the annualmodel SST over 1881–1900 for the (top)

RSP and (bottom) Iter analyses.

TABLE 3. Time averages of spatial correlationwith the full model

annual average and low-frequency estimate, over 1861–2005.

Correlations are over regions with historical sampling (Sample)

and without sampling (No Sample). Reconstructions use EOFs

from the satellite period, RSP, and iteratively-adjusted EOFs, Iter.

Correlations with the model low-frequency include the ERSST-

method low-frequency estimate, LF(G) and the low-frequency

estimate of the Iter reconstruction, LF(R). For the LF correlations,

sampling of the center year is used to define regions.

Sample No Sample

Ann RSP 0.64 0.51

Ann Iter 0.73 0.71

LF(G) 0.66 0.65

LF(R) 0.73 0.80
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reconstruction and the new EOF modes are used to

produce an updated reconstruction. The process is re-

peated until the reconstruction variance stabilizes.

This gives a way to combine fully sampled modern

data with historical data to develop a set of spatially

complete EOFs that better reflect variations over the

historical period. Testing shows that the annual SST

historical sampling is sufficient for this method. If

historical data are too sparse, then the EOF modes

cannot be reliably adjusted. How much sampling is

needed depends on the spatial scales of the variations.

Annual variations tend to have larger spatial scales

than monthly variations, and annual sampling tends to

be better than sampling for individual months. Those

qualities help to make the method more useful for

annual analysis.

The method was also tested for the analysis of monthly

anomaly increments from the annual average and com-

pared to an increment analysis using fixed satellite-period

modes. The test showed that the method did not improve

the monthly increment analysis. For a monthly SST

analysis, the iterative method is most useful for giving a

FIG. 8. Global averages of annual low-frequency anomalies from the full data, LF(F), the

ERSST method applied to the gapped data, LF(G), and the Iter reconstruction, LF(R).

FIG. 9. Global spatial correlations of LF(F) with LF(G), and LF(R).
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superior first-guess analysis that more fully accounts for

multidecadal to interannual variations.

Although this study tests a global annual SST analysis,

in principle the method could be applied on different

space and time scales, and for different fields. However,

the method would need to be tested and tuned for the

different scales. The historical sampling needs to be dense

enough to reliably adjust the leading reconstruction

modes. If the leading modes represent only relatively

small-scale features for a region, then historical sampling

may not be dense enough to improve that region. The

amount of historical variance that can be analyzed is de-

pendent on the sampling relative to the spatial correlation

scales for the variations of interest.

Results show that potential improvements in the SST

reconstruction are largest in the extratropics and before

FIG. 10. Low-frequency anomalies for model year 1896 from (top) LF(F), (middle) LF(G), and

(bottom) LF(R).
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the mid-twentieth century. Improvements are reflected

in better representation of large-scale multidecadal

variations for that period. Variations that could be bet-

ter represented by the improved method include the

global change signal and extratropical climate modes,

such as the PDO, the NAO, and Southern Hemisphere

annular modes. An improved analysis could help to

develop a better understanding of how those variations

interact with and influence climate for long periods. In

addition, the interactions between Southern Ocean

variations and global warming may be more reliably

studied with an improved analysis. An improved anal-

ysis can be useful for statistical studies of long-term

climate variation and also to help validate models used

for dynamic climate studies.
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APPENDIX

The Iterative Reconstruction Method

The reconstruction method is based on the analyses of

Smith et al. (1996, 1998). The method analyzes sparsely

sampled historical anomalies by fitting them to a set of

EOF spatial modes. Here covariance-based EOFs are

used to analyze the simulated SST data. The EOFs for the

first iteration are computed using spatially complete an-

nual SST anomalies over the satellite period, 1982–2005.

Error estimates are not added to the first iteration’s sim-

ulated data, to simulate high-quality satellite-based data.

The historical annual anomalies with error estimates

are fit to the set of modes to produce the set of weights

that minimize the mean-square error (MSE) of the

analysis as measured against the available simulated

data at sampling locations. The reconstruction analysis

is defined as

F(x, t)5 �
M

m51

c
m
(x)w

m
(t) . (A1)

Here cm(x) is the EOF mode m eigenvector at spatial

location x, and wm(t) is the optimal mode weight for

time t. The total number of modes used isM. The best-fit

weights for the modes are computed separately for each

time. The spatial MSE is defined at each time as

E2 5 �
K

x51

[D(x, t)2F(x, t)]2d(x) cosu(x). (A2)

The data anomalies being fit to the modes are D(x, t);

d(x) is a delta function equal to 1 if there is sampling at

location x and 0 otherwise; and u(x) is the latitude of

location x, used as an area-weighting factor for the

gridded data. The total number of spatial locations is K.

The minimum MSE is found by solving

›E2

›w
m

5 0, for m5 1, 2, . . . ,M . (A3)

By substituting Eqs. (A1) and (A2) into Eq. (A3), it can

be shown that the weights are computed by solving the

following system of equations:

�
M

m51

"
w

m �
K

x51

c
m
(x)c

n
(x)d(x) cosu(x)

#

5�
K

x51

D(x, t)c
n
(x)d(x) cosu(x), for m5 1, 2, . . . ,M.

(A4)

Equations (A4) are solved numerically to yield the op-

timal set of weights for reconstruction.

Because of the sparse historical sampling, some

modes may not always be adequately sampled. A badly

sampled mode could inflate random errors in the his-

torical data, so modes with poor sampling are screened

out of the analysis. When modes are adequately sam-

pled, the random errors are almost completely filtered

out of the analysis, since random variations will not

match the coherent variations represented by the

modes. Sampling of each mode is described using the

fraction of the mode variance sampled by the available

data,

f
m
5
�
K

x51

c2
m(x)d(x) cosu(x)

�
K

x51

c2
m(x) cosu(x)

. (A5)

If this fraction falls below a critical fraction for the mode

m, then that mode is excluded from the reconstruction.

Here a critical fraction of 0.05 is used, which we have

found to be sufficient to filter out almost all noise while

minimizing analysis damping.

The first iteration uses EOFs, cm,1, based on simulated

data from 1982 to 2005 to simulate the satellite-period

base data. To update the EOFs for the next iteration, the

simulated historical data are statistically reinjected into

the first iteration’s reconstruction, F1(x, t). The data
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reinjection is done for each year by forming increments

between the simulated data with errors and the re-

construction, I1(x, t)5D(x, t)2F1(x, t). An OI of

those increments is done on the annual 58 grid using

increments at sampling locations within 108 zonally and
within 58 meridionally. The OI weights are damped so

that if there are few data or large errors, the in-

terpolated value will be damped toward zero, as in the

OI analysis of Reynolds and Smith (1994). An updated

annual analysis is then computed for 1861–2005,

T1(x, t)5F1(x, t)1OI[I1(x, t)].

For the second iteration a new set of EOFs is com-

puted, cm,2, based on T1(x, t) over 1861–2005. This new

set of EOFs incorporates historical variations that have

enough sampling to influence the leading modes of the

analysis. Higher modes are not used because they may

represent variations with small spatial or temporal

scales, which could be caused by poor sampling or data

errors. The updated set of EOFs is used to compute an

updated reconstruction, F2(x, t).

The updated reconstruction is compared to the pre-

vious iteration using the average spatial variance over

all areas and all times. If the average spatial variance

change is less than 5%, the process stops; if not, then

more iterations are computed until the change is less

than 5%.
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